Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Appl Energy ; 334: 120676, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2176349

ABSTRACT

During the SARS-CoV-2 (COVID-19) pandemic, governments around the world have formulated policies requiring ventilation systems to operate at a higher outdoor fresh air flow rate for a sufficient time, which has led to a sharp increase in building energy consumption. Therefore, it is necessary to identify an energy-efficient ventilation strategy to reduce the risk of infection. In this study, we developed an occupant-number-based model predictive control (OBMPC) algorithm for building ventilation systems. First, we collected the occupancy and Heating, ventilation, and air conditioning system (HVAC) data from March to July 2021. Then, four different models (Auto regression moving average-based multilayer perceptron (ARMA_MLP), Recurrent neural networks (RNN), Long short-term memory networks (LSTM), and Nonhomogeneous Markov with change points detection (NH_Markov)) were used to predict the number of room occupants from 15 min to 24 h ahead with an interval output. We found that each model could predict the number of occupants with 85 % accuracy using a one-person offset. The accuracy of 15 min of the ahead prediction could reach 95 % with a one-person offset, but none of them could track abrupt changes. The occupancy prediction results were used to calculate the ventilation demand using the Wells-Riley equation, and the upper bound can maintain an infection risk lower than 2 % for 93 % of the day. This OBMPC model could reduce the coil load by 52.44 % and shift the peak load by 3 h up to 5 kW compared with 24 × 7 h full outdoor air (OA) system when people wear masks in the space. The occupancy prediction uncertainty could cause a 9 % to 26 % difference in demand ventilation, a 0.3 °C to 2.4 °C difference in zone temperature, a 28.5 % to 44.5 % difference in outdoor airflow rate, and a 10.7 % to 28.2 % difference in coil load.

2.
Energy Research & Social Science ; 85:102401, 2022.
Article in English | ScienceDirect | ID: covidwho-1556979

ABSTRACT

Low-income households face long-standing challenges of energy insecurity and inequality (EII). During extreme events (e.g., disasters and pandemics) these challenges are especially severe for vulnerable populations reliant on energy for health, education, and well-being. However, many EII studies rarely incorporate the micro- and macro-perspectives of resilience and reliability of energy and internet infrastructure and social-psychological factors. To remedy this gap, we first address the impacts of extreme events on EII among vulnerable populations. Second, we evaluate the driving factors of EII and how they change during disasters. Third, we situate these inequalities within broader energy systems and pinpoint the importance of equitable infrastructure systems by examining infrastructure reliability and resilience and the role of renewable technologies. Then, we consider the factors influencing energy consumption, such as energy practices, socio-psychological factors, and internet access. Finally, we propose interdisciplinary research methods to study these issues during extreme events and provide recommendations.

3.
Science & Technology for the Built Environment ; : 1-60, 2021.
Article in English | Academic Search Complete | ID: covidwho-1410879

ABSTRACT

The COVID-19 pandemic has caused millions of deaths and great economic loss globally. There has been substantial evidence supporting the airborne transmission of SARS-CoV-2. Airborne route has been considered as a major transmission pathway, which can spread the disease over a longer distance and time. The viral loads in the respiratory tract of a virus carrier are typically below 109 RNA copies/mL and are related to the emission rate of pathogens. Most particles expelled during respiratory activities are smaller than 1-2µm in diameter. Viral aerosols can remain infectious for hours under typical indoor conditions. Sunlight contributes greatly to the viability inactivation of SARS-CoV-2. The outbreaks in different scenarios are reviewed based on existing data. Most outbreaks were related to long-term care facilities, K-12 schools, restaurants, retail facilities, and offices. The Wells-Riley model for estimating the risk of airborne transmission is introduced, along with model parameters such as the quanta generation rate, virus-containing particle size distribution, and inactivation rate. The effectiveness of various IAQ control strategies for mitigating the airborne transmission risk is analyzed, including PPE, ventilation strategies, partitions, air cleaning, and disinfection technologies, and occupancy control strategies. Both benefits and costs should be considered in designing the control strategies. [ABSTRACT FROM AUTHOR] Copyright of Science & Technology for the Built Environment is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

4.
Build Environ ; 200: 107926, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1213064

ABSTRACT

The unprecedented coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made more than 125 million people infected and more than 2.7 million people dead globally. Airborne transmission has been recognized as one of the major transmission routes for SARS-CoV-2. This paper presents a systematic approach for evaluating the effectiveness of multi-scale IAQ control strategies in mitigating the infection risk in different scenarios. The IAQ control strategies across multiple scales from a whole building to rooms, and to cubical and personal microenvironments and breathing zone, are introduced, including elevated outdoor airflow rates, high-efficiency filters, advanced air distribution strategies, standalone air cleaning technologies, personal ventilation and face masks. The effectiveness of these strategies for reducing the risk of COVID-19 infection are evaluated for specific indoor spaces, including long-term care facility, school and college, meat plant, retail stores, hospital, office, correctional facility, hotel, restaurant, casino and transportation spaces like airplane, cruise ship, subway, bus and taxi, where airborne transmission are more likely to occur due to high occupancy densities. The baseline cases of these spaces are established according to the existing standards, guidelines or practices. Several integrated mitigation strategies are recommended and classified based on their relative cost and effort of implementation for each indoor space. They can be applied to help meet the current challenge of ongoing COVID-19, and provide better preparation for other possible epidemics and pandemics of airborne infectious diseases in the future.

SELECTION OF CITATIONS
SEARCH DETAIL